Optimal error estimate of the Legendre spectral approximation for space-fractional reaction–advection–diffusion equation

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal Error Estimate of Chebyshev-Legendre Spectral Method for the Generalised Benjamin-Bona-Mahony-Burgers Equations

and Applied Analysis 3 Let L2 Λ be a square integrable function space with inner product and norm as follows:

متن کامل

Pseudo-spectral ‎M‎atrix and Normalized Grunwald Approximation for Numerical Solution of Time Fractional Fokker-Planck Equation

This paper presents a new numerical method to solve time fractional Fokker-Planck equation. The space dimension is discretized to the Gauss-Lobatto points, then we apply pseudo-spectral successive integration matrix for this dimension. This approach shows that with less number of points, we can approximate the solution with more accuracy. The numerical results of the examples are displayed.

متن کامل

The spectral iterative method for Solving Fractional-Order Logistic ‎Equation

In this paper, a new spectral-iterative method is employed to give approximate solutions of fractional logistic differential equation. This approach is based on combination of two different methods, i.e. the iterative method cite{35} and the spectral method. The method reduces the differential equation to systems of linear algebraic equations and then the resulting systems are solved by a numer...

متن کامل

Numerical Solution of Space-time Fractional two-dimensional Telegraph Equation by Shifted Legendre Operational Matrices

Fractional differential equations (FDEs) have attracted in the recent years a considerable interest due to their frequent appearance in various fields and their more accurate models of systems under consideration provided by fractional derivatives. For example, fractional derivatives have been used successfully to model frequency dependent damping behavior of many viscoelastic materials. They a...

متن کامل

Pseudo-Spectral Method for Space Fractional Diffusion Equation

This paper presents a numerical scheme for space fractional diffusion equations (SFDEs) based on pseudo-spectral method. In this approach, using the Guass-Lobatto nodes, the unknown function is approximated by orthogonal polynomials or interpolation polynomials. Then, by using pseudo-spectral method, the SFDE is reduced to a system of ordinary differential equations for time variable t. The hig...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Difference Equations

سال: 2018

ISSN: 1687-1847

DOI: 10.1186/s13662-018-1572-4